The Hilbert–Kunz Function of a Characteristic 2 Cubic
نویسندگان
چکیده
منابع مشابه
Characteristic function of a meromorphic function and its derivatives
In this paper, some results of Singh, Gopalakrishna and Kulkarni (1970s) have been extended to higher order derivatives. It has been shown that, if $sumlimits_{a}Theta(a, f)=2$ holds for a meromorphic function $f(z)$ of finite order, then for any positive integer $k,$ $T(r, f)sim T(r, f^{(k)}), rrightarrowinfty$ if $Theta(infty, f)=1$ and $T(r, f)sim (k+1)T(r, f^{(k)}), rrightarrowinfty$ if $Th...
متن کاملComputations in cubic function fields of characteristic three
This paper contains an account of arbitrary cubic function fields of characteristic three. We define a standard form for an arbitrary cubic curve and consider its function field. By considering an integral basis for the maximal order of these function fields, we are able to calculate the field discriminant and the genus. We also give explicit algorithms for ideal arithmetic which for certain cu...
متن کاملA New Goodness-of-Fit Test for a Distribution by the Empirical Characteristic Function
Extended Abstract. Suppose n i.i.d. observations, X1, …, Xn, are available from the unknown distribution F(.), goodness-of-fit tests refer to tests such as H0 : F(x) = F0(x) against H1 : F(x) $neq$ F0(x). Some nonparametric tests such as the Kolmogorov--Smirnov test, the Cramer-Von Mises test, the Anderson-Darling test and the Watson test have been suggested by comparing empirical ...
متن کاملCubic Laurent Series in Characteristic 2 with Bounded Partial Quotients
There is a theory of continued fractions for Laurent series in x with coefficients in a field F . This theory bears a close analogy with classical continued fractions for real numbers with Laurent series playing the role of real numbers and the sum of the terms of non-negative degree in x playing the role of the integral part. In this paper we survey the Laurent series u, with coefficients in a...
متن کاملcharacteristic function of a meromorphic function and its derivatives
in this paper, some results of singh, gopalakrishna and kulkarni (1970s) have been extended to higher order derivatives. it has been shown that, if $sumlimits_{a}theta(a, f)=2$ holds for a meromorphic function $f(z)$ of finite order, then for any positive integer $k,$ $t(r, f)sim t(r, f^{(k)}), rrightarrowinfty$ if $theta(infty, f)=1$ and $t(r, f)sim (k+1)t(r, f^{(k)}), rrightarrowinfty$ if $th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1997
ISSN: 0021-8693
DOI: 10.1006/jabr.1997.7061